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SUMMARY 

New implicit schemes for solving a system of conservation laws in one space dimension are obtained by using 
the cubic-spline technique. By making use of certain perturbation terms, these implicit schemes have been 
transformed to dissipative schemes. The nonlinear instabilities appearing in the solution in the narrow shock 
region have been damped by applying the automatic switched Shuman-filter method. Four test examples 
with continuous and discontinuous initial conditions have been solved to illustrate the theory. The proposed 
method has been extended to solve a system of conservation laws in two space dimensions. 

1. Introduction 

Nonlinear hyperbolic systems arise in several areas like gas dynamics, astrophysics and meteo- 

rology. In recent years, many f'mite-difference schemes have been proposed for solving these 

systems of  conservation laws (cf. Richtmyer [1], Gourlay and Morris [2], Rubin and Bur- 

stein [3], McGuire and Morris [4]). As these schemes are explicit, they involve a severe restric- 

tion on the time step. Some implicit schemes (cf. Gourlay and Morris [5], Gary [6], Abarbanel 

and Zwas [7], Beam and Warming [8]) have also been proposed for solving these systems; these 

schemes are nondissipative. However, McGuire and Morris [9] have proposed a dissipative im- 

plicit finite-difference scheme of  second order for solving such a system. 

The order of  accuracy in all these schemes ranges from order one to order four. Numerical 

results obtained by the first-order schemes show smooth profiles of  discontinuities, resisting 

nonlinear instability; the shocks are found to be very smeared. The use of  second-and higher- 

order schemes give rise to sharp profiles with large oscillations. These abnormal results are due 

to the presence of  higher-order derivatives near shock-like discontinuities. The schemes of  third 

and fourth order are of  little practical value because of  their complexity demanding an exces- 

sive use of  computer time; they also do not provide any specific advantage in handling the 

discontinuities. 

Implicit schemes, in general, are numerically more stable. They are more useful when the 

instability bound of  the explicit scheme is more restrictive than the desired accuracy bound. 

In the present paper, we have used the cubic-spline technique and certain perturbation terms 
for devising a general second-order dissipative implicit scheme. The dissipative nature of  the 
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scheme produces a damping for the smaller Fourier components but not for the selective 

components of the solution. In order to overcome this difficulty, we have used an automatic 

switched Shuman-ftlter to devise schemes which automatically and smoothly switch on the 
numerical fdter only in the narrow shock region. The falter technique keeps the order of the 

original scheme unaltered in the smooth region. By choosing proper values of the parameters 
occurring in the general scheme, we have derived some schemes well-known from literature and 

a scheme of third-order accuracy. We have solved test examples to illustrate the merits of the 

schemes. The proposed numerical technique provides a unified treatment for deriving finite- 
difference schemes for the solution of systems of conservation laws. 

2. The one-dimensional case 

Consider the system of conservation laws 

au af 
a--'7" + ~ = 0 (2.1) 

with the initial and boundary conditions 

u(x, O) = Uo (x), u (0, t) = u l(t), (2.2) 

respectively, where u = u (x, t) is a vector and f = f (u)  is a vector function. The solution is sought 
in the region 

R = [ O < . x < ~ X l x  [t >01. 

The existence and uniqueness of the solution of this system are discussed by Jeffrey and 
Taniuti [ 10]. 

For the numerical solution of the problem, the region R is covered with grid points with 

mesh spacing h in the x-direction and time step k in the t-direction. We denote u(ih, nk) by U F. 
Then U/n and W n denote the values of the solution of the differential equation and its finite- 

difference approximation respectively at the grid point (ih, nk). We take X = Nh, where N is the 

number of mesh points. Equation (2.1) is approximated as 

W. n*l, - W. n, = k(Olm n+l + O:mn), (2.3) 

where m n = S;(xi) , Sn(x ) is the vector cubic-spline function interpolating f/(i = 0,1,2,...,N) at 
the nth time level, 01 and 02 are parameters. From the cubic-spline relations [ 11 ], we have 

3 
m'n,-1 + 4m 7 + mn+l = ~/aSf~/, 

mn+l mn+l 3 i -1 +4  i "1" m~++ll -" h t't~f~i +1' 

(2.4) 

(2.5) 

n 
where g~fn = f i+ l  - f i -  1" 
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Eliminating m n and m n ÷ 1 from Eqs. (2.3) to (2.5), an implicit finite-difference approxima- 

tion to Eq. (2.1) is obtained in the form 

~2 P (01 ~6f  n+l + 02/~fin), (1 + --~-) (win+ 1 - Win) = -~ - (2.6) 

where p = k/h. This is the basic equation obtained from (2.1). We wish to develop a scheme 
which has at least second-order accuracy, is dissipative and has good stability properties. We 

, r l + a  

perturb scheme (2.6) by the term p (fi+ n÷a - ft--~ ) with parameter a and adjust the para- 

meters of the constituent terms. The modified form of scheme (2.6) is 

b 6x21 (wn+l - l¥/n ) ( l + - g  

=-P -I ,  ) 
_ _  , 

(2.7) 

where b and c are parameters and 

,./'1 + a  , n  +a  
f/ = f(W. ), (2.8/ 

W* T M  1 .wn n n "~{ i+-~ + W i - - l ) - a P ( f i + k  _ fn  l). (2.9) i = i-  5 

It may be remarked that scheme (2.7) can also be obtained by the weighted linear finite- 
element method. By taking b = 0, c = O, 01 = -1 /2  and 02 = -1 /2  in (2.7), one gets a scheme of 
Crank-Nicolson type. For b = 0 in (2.7), one gets the general scheme proposed by McGuire and 
Morris [9]; their scheme differs from (2.7) only in having the number of parameters reduced by 
one. Lerat and Peyret [ 12] have proposed a general explicit scheme for the system. 

By using Taylor-series expansion about the point (ih, nk), we get four relations for the 

parameters a, b, c, 01, 02 in the form: 

01 +02 + c = - l ,  (2.10) 

01 +ac =-1 /2 ,  (2.11) 

01 + a 2 c = - 1 / 3 ,  (2.12) 

c 
01 + 02 +--~ ---b.  (2.13) 

Equations (2.10) and (2.11) give conditions for the scheme to be of second-order accuracy, 
while Eqs. (2.101 to (2.13) are the conditions for the scheme to be of third-order accuracy. 
Thus, we have obtained a three-parameter class of second-order accurate implicit schemes and a 
one-parameter class of third-order accurate implicit schemes for the given Eq. (2.1). 
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For examining the stability of these schemes, we eliminate the starred values from Eqs. (2.7) 

to (2.9). Using Fourier integrals, the linearized amplification matrix for (2.7) turns out to be 

A(02 +c) sina 2acp 2 b ( c o s a - 1 ) +  1 + -~ - (cos o t -1)  

G(a) = " (2.14) 
{ l + - ~ b ( c o s o ~ - l ) -  x / r ~  o lpT l  sin t~ } 

,4 is equivalent to the locally constant value of A(u) --- Of/bu in the system 

au .~0u  _-- 0. (2.15) 
0-7 + ax 

a =/3h, 13 is the variable in the Fourier space. Let g(a) denote the eigenvalue of G(ot) and let the 
real number ~ be an eigenvalue of A. After some simplification, 

1 L1 cos l 
Ig(a) l 2 = 1 (2.16) 

+ ( c o s ~ -  1 +021p 2 X 2 sin 2 o~ 

When b --- 0, c = - d  and 01 = -2b ,  Eq. (2.16) gives the relation obtained by McGuire and 
Morris [9] for their general scheme. From (2.14), the matrix G(a) can be diagonalized since A 

has a complete set of linearly independent eigenvectors. Thus, the Von Neuman condition is 
sufficient as well as necessary for the stability of the scheme [13]. The stability, in the 
linearized sense, is assured provided 

0 <<. 2 acp 2 ~2, 2__b_b _ 1 - 2acp 2 ~2 ~< 1 (2.17) 
3 

for a, c > 0 and for all the eigenvalues X of A. The corresponding condition for the stability, 
when a > 0 and c < 0 is given by 

--1 <<, 2acp 2 k 2 , 2b 1 - 2acp 2 X 2 <<, O. (2.18) 
3 

In order to obtain the dissipative schemes, we neglect the equality sign in (2.17) and (2.18). 
Then there exists a constant 81 > 0 such that 

Ig(~)l <~ 1 - 81 lot 14 (2.19) 

for all eigenvaluesg of G and for all I a I ~< zr. Inequality (2.19) shows that the scheme (2.17) is 
dissipative and of order four in the linearized sense. Inequalities (2.17) and (2.18) are the 
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conditions for the choice of the mesh ratio p and parameter b. In the case of a dissipative 
scheme, these conditions are given by 

p I X I <  1/(2ac) I/2, (2.20) 

3(1 + 2acp 2 I X 12)/2 < b <3(1 + acp 2 I X 12), (2.21) 

provided c 2> 0, a 3> 0 and X ¢ 0 and 

- 1  < 2acp 2 [ X 12 < 0, (2.22) 

3acp 2 IX 12 < b <3(1 + 2acp 2 IX 12)/2, (2.23) 

w h e n a > 0  and c < 0 .  
Scheme (2.7) yields a nonlinear system of difference equations. Instead of using iterative 

methods which are time-consuming, we have used the technique followed by Gourlay and 
Morris [5] for solving the implicit nonlinear equations; this technique gives rise to a block 
tridiagonal system at each time level. Let the matrix A" be defined by 

f (u )  = A (u )  . u .  (2.24) 

The choice of.4 will depend on the particular problem to be solved. Using (2.24) and (2.7), one 

gets 

{ l + ~ b ~  2-x "2P01/a~A(Wi n+l)}  wn+li 

b wn b .n+a .n+a 
= (1+-~6~)  i +'~021~6ff+PC('fi+-~ - - f i - - I  ) ~ "  (2.25) 

**n+l 
Let W i denote an approximation for u (ih,(n+l)k) which is at least of first-order accuracy 
and is smooth through the second.order terms. McGuire and Morris [9] have shown that the 

**n+l 
replacement of A (WTi ÷1) by A" (Wi ) does not alter the second-order accuracy of the 

**n+l 
method. We have used Eq. (2.7) with 01 = 0 and b = 0 to determine Wi with the proper 
choice of the parameters 02, a, c from Eqs. (2.10) and (2.11) to get the second-order accuracy 
of W n+l .  Thus Eq. (2.25) yields a three-block recurrence relation at each time level. We require 
[4 ,'n+l and wnff 1 at the boundaries for solving it. At the lower boundary, we can take W n - 

O - -  o ~v • n+l • . n+l 
u~ (nk), n = 1,2 ..... There are two methods for calculating W~ . First, we can calculate w N 
by one of the many available explicit techniques. This approach gives a block tridiagonal system 
to be solved at each time level for 1 W n }N- 1. The second approach is to replace the operator 
82 and p8 in Eqs. (2.7) to (2.9) by Vx 2 and 2 V x + V2x ; it gives a block tridiagonal system for 

x 

IW" N-1 i } at each time level [91. We have used the second approach for our computational 

work. 
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3. Test examples 

EXAMPLE 1 : 
Consider the scalar equation 

~U a (U2/2) = 0 

over the region R for the initial and boundary conditions 

U o ( X ) = X  , ul(t)= 0. 

Its exact solution is given by 

u(x ,  t) = [1 + 2x t  - (1 + 4 x t )  1/2 ] /2 t  2 . 

Using inequalities (2.21) and (2.23), 

be[1 .5 ,4 .5] ,  i f a > O ,  c > O ,  

and 

D. h r. Holla and P. C Jain 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

u l ( t ) = l ,  t > O .  
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and the boundary data 

1, O ~ x < 0 . 1  

Uo(X) = 

O, x~>O.1 

EXAMPLE 2: 

Consider Eq. (3.1) with the discontinuous initial data 

For b e [1.5, 4.5], the elements along the principal diagnonal of the matrix take very small 

values and for b = 3 they are all zero. This gives rise to difficulties in the solution of the matrix 
equation. We have considered the case when b e [-1.5, 1.5]. Table I provides a summary of the 

errors for this problem at the 300th time step. The stability condition is a c e  [-0.5,  0] when 
p = 1. By examining the numerical results, one finds that the schemes are stable for ac e [ - d ,  0], 

where the value of d is larger than predicted by the linearized theory. The same remark holds 

good when p = 2.0, but the instability occurs for smaller values of I ac I compared with the 
corresponding value when p = 1.0. The errors are found to be smaller for the case when the 
parameters satisfy the relations (2.10) to (2.13). To be specific, the errors are small for b = 0.5, 
a = 0.90825, c = -2 .0  and b = 0.5,a = 0.5, c = 0.6667. 

b e [ - 1 . 5 , 1 . 5 ] ,  i f a > 0 ,  c < 0 .  (3.5) 
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TABLE I 

Error E .  106 at the 300th time step at the central grid point for Example I 

263 

- 0 . 1 2 5  - 0 . 2 5  - 0 . 5  - 1 . 0  - 2 . 0  - 4 . 0  

p =  1.0 
b = - 0 . 5  

0.125 - 9 9 3  - 8 9 6  - 7 2 6  - 4 9 2  - 1 3 3  486 
0.25 - 7 8 2  - 7 3 9  - 6 4 8  - 4 7 1  - 1 3 8  480 
0.50 - 6 3 6  - 6 5 5  618 - 4 7 6  - 1 5 0  462 
1.00 - 6 1 2  - 6 5 9  - 6 2 9  - 4 8 3  - 1 7 9  417 
2.00 - 6 8 1  - 6 2 6  - 6 4 7  - 5 1 5  - 2 4 4  300 
4.00 - 7 1 5  - 7 0 3  - 6 8 3  - 5 8 6  - 3 5 9  * 

a = 0.90825,  c = - 2 . 0 ,  E .  106 = - 1 7 3  

p =  2.0 
b = - 0 . 5  

0.125 - 1 3 8  - 1 9 9  - 2 7 0  - 2 7 3  - 7 5  329 
0.25 - 1 2 1 5  - 8 3 9  - 4 8 0  - 3 0 9  - 8 1  325 
0.50 - 1 5 1 3  - 8 6 9  - 4 4 8  - 3 2 2  - 9 5  311 
1.00 - 9 8 1  - 5 4 7  - 4 3 8  - 3 4 0  - 1 2 4  289 
2.00 - 5 0 6  - 4 9 3  - 4 5 7  - 3 7 5  - 2 1 2  144 
4.00 - 5 9 2  - 5 0 5  - 4 3 9  * * * 

a = 0.92825,  c = - 2 . 0 ,  E .  106 = - 1 1 8  

p =  1.0 
b =0 .5  

0.125 132 34 - 1 6  79 395 972 
0.25 - 1 0 6  - 1 0 6  - 7 1  66 391 961 
0.50 - 2 6 5  - 1 8 7  - 1 0 1  55 380 958 
1.00 - 2 9 5  - 2 0 1  - 1 1 3  40 357 930 
2.00 - 2 5 5  - 2 0 0  - 1 3 0  11 303 852 
4.00 - 2 5 2  - 2 1 8  - 1 6 1  - 5 2  194 * 

a = 0.5, c = - 0 . 6 6 6 7 ,  E .  106 = - 5 0  

* Instability 

TABLE II 

Values o f  the parameters for the scheme (2. 7J to be stable for Example 2 

(b = -0.5, 0.SJ 

b = - 0 . 5  

Maximum value o f  
p c c 

a > 0 for stability 

1.0 

b =0 .5  

Maximum value o f  
a > 0 for stability 

- 0 . 1 2 5  4.0 - 0 . 1 2 5  2.0 
- 0 . 2 5  2.0 - 0 . 2 5  1.0 
- 0 . 5 0  1.0 - 0 . 5 0  0.5 
- 1 . 0  0.5 - 1 . 0  0.25 
- 2 . 0  0.25 

2.0 
- 0 . 1 2 5  1.0 
- 0 . 2 5  0.5 
- 0 . 5 0  0.25 

c -- - 0 . 6 6 6 7  a = 0.5 
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The solution of  this problem has a discontinuity travelling into the field of  solution along the 

line x = 0.1 + t/2 with velocity ax/~t = 0.5. In Fig. 1, we have drawn curves for the solution 

given by the difference scheme (2.7) after the 50th time step for the grid points between x = 

25 ph and x = 25 ph + 15 h. The theoretical shock occurs at the grid point x = 25 ph + 10 h. In 

all cases, we have chosen h --- 0.01. Table II gives the values of  the parameters for the region of  

stability when b = -0 .5 ,  0.5 and p = 1.0, 2.0. On examining Fig. 1 and the computed results, 

one finds that the 'best '  shock profiles are obtained for parameter values close to the maximum 

values predicted by the stability conditions. For p = 1.0 and b = 0.5, the 'best '  profiles are 

derived for the values l ac 1~0 .5  and for the parameters satisfying the relations (2.10) to 

(2.13). 

20 

1.0 

0,0 

=-0.5, ~---0.125, p=l.0 

~=2.0 i• -~= t..O I ~  

2-° l 

1.0 

O.O 

b--0.5~ c=-0.25, p=l-O 

~=1,0 

2.0 

~ I.0 

0-( 

b: 0.5, p=1.0 

2.0 

1.0 

Figure 1. 

2° I = - 0.59"~ = -0 .25,  p= 2.0 -b= 0.5 
p= 2.0 

Solution of Example 1 at 50 At by scheme (2.7) 
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1,30 

-'0.5 
U 

0.0 

t.0 

tl 

x 0.0 

p= 0.5 

1.0 

x 0.0 

Figure. 2. Solution of Example Figure 3. Solution of Example 
2 by the Lax-Wendroff scheme 2 by the MacCormack method 

1 
b : --0.5 

p= 0.5 

a= 2.0 
c = - 0.25 

1.0 

Figure 4. Solution of Example 
2 by scheme (2.7) 

Figs. 2, 3 and 4 show shock profiles as obtained by using the Lax-Wendroff method, the 

MacCormack method and our method respectively. The comparison of these figures shows that 
the proposed technique gives better shock profiles for certain values of the parameters. 

4. The filter technique 

By numerical experiments, we get shock profiles with oscillations when the parameters are such 
that they satisfy inequality (2.17) close to the lower bound. To minimise these undesirable 
oscillations for the chosen values of the parameters, we use the automatic switched Shuman- 
filter technique [16]. From Eq. (2.16), it is observed that the scheme does not have dissipation 
for the following cases: 

acp 2 X 2 = 0, (4.1) 

2___bb _ 1 - 2acp 2 X 2 = O, (4.2) 
3 

cos t~ - 1 = O. (4.3) 

It may be remarked that conditions (4.1) and (4.2) cannot be considered when the parameters 
satisfying these conditions violate the condition of dissipation. For the wave length L = Ax and 

using the relation L / ~ c  = 2 n/a, it is found that no damping occurs in this case. To avoid this 
type of situation, we use the relation 

~n+l  n 1 F"fi'n+l (wn+l n+l ~n+l n+ Wi_l)~ i =i4i ~ + . ~ L v i + ~ , ,  i + l _ W i  ) _ o i _ _ ~ ( [ ¥ i  1 _ n+l , (4.4) 

where O is the automatic switch to be defined later. Using Taylor series expansion, the right- 

hand side of Eq. (4.4) approximates EW+ 1 h(ffWx)x~ n+l which is in conservation form. 
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We treat 0" as a local constant and use the Fourier transform method on Eq. (4,4) to get 

s:(, 
where S is the amplification matrix corresponding to the filtering step (4.4). Vliegenthart [ 15] 
and Harten and Zwas [ 14] have shown that S has a damping effect and the phases of the Fourier 
components are unaffected as S is a real quantity. It can be shown that if 0 ~< 0" ~< 2, then for 

every ~, I ~ I ~< 7r, 

1 - 0  sin 2 -~ ~<1. 

Hence, the stability condition remains unaltered. 
The automatic switch O" in Eq. (4.4) is defined to satisfy the following properties: 

(i) Representation in conservation form. 
(ii) Preservation of the linear stability of the basic scheme. 
(iii) Sensibility to shock-like discontinuities (0"-- O(1) at the shock). 
(iv) Absence of effect on the accuracy in smooth regions (0"= O(h'-1)). 
Conditions (i) and (ii) are already satisfied. 

One can construct a function of the dependent variables which is a good sensor for shocks. 
We consider two such functions containing ~, the largest eigenvalue ofA = A(u), 

[ ;ki+ 1 - ;ki ~rn , (4.5 ) 
/ 

~i÷~ = × exp 1 - - } t ~  ---~ ' (4.6) 

where m I> r 1 (r is the order of accuracy of the scheme), X = 2/D, (D is the space dimension). 
Comp, utationally, we have found that the best results are obtained for 1/2 ~< X ~< 1. The func- 
tion 0 in (4.5) is an adequate sensor for the shock region but can be dangerous for the following 

cases: 
(1) The solution is to be continuous and the desired order of accuracy of the basic scheme is to 

be maintained everywhere. 
(2) When the solution contains rarefaction in addition to shocks. 
In these cases, it is better to use the second function O" as given by (4.6). 

We have solved two examples for testing the validity of the above-defined filter for handling 

the discontinuities. 

EXAMPLE 3: 

u t + t./u x = 0 

with the initial conditions 
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uo(x)=  I 2 , x < 0 . 1  

0 , x~>O.1 

or 

267 

Uo(X) = 

1 , x < O  

1 - x  , 0 ~ <  x ~ < l  

x -  1 , l ~ < x < 2  

1 , 2 ~ < x  

In the latter case, a shock will be formed at time t = 1, and there will be a rarefaction region 

with gradients decreasing with time t. In this case, the exact solution in the continuous region 

( O < ~ t <  1)is 

u(x, t)= 

1 , x < ~ t  

1 - x  
-(-S--~-' t <. x <~ l 

x - l  , l <<.x<<.2+t 

t + l  

1 , 2 + t < ~ x  

2.0 

t 

1.0 

tl 

I 
I 
I 
! 
I 
I 
i ° 

n :100 
p : 0.5 

a : 0.125 
b =--0.5 
¢ : -  ~25 

Figure 5a. Solution of Example 3 by scheme (2.7) 
without filter 
with filter 

2.0 

1.0 

n: 100 

p --0.5 

0:2.0 

b :-0.5 

c :-0.25 

Figure 5b. Solution of Example 3 by the proposed 
scheme using filter 
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1.0 

0.7  

Figure 6. 

n -- 3 0 0  

a -- 0.25 

b=- 0,5 
c= - 0-25 
p : l . O  

Comparison of solutions: 
- -  With filter 
. . . .  Exact solution 

I 
20 .0  

In the discontinuous region (1 ~< t), the solution is 

u(x, t)= 

1 , x < 2 + t - r where r = (2 + 2t) Y2 

X--1  
- ~ - ~ ,  2 + t - r < . x < . 2  +t 

1 , 2 + t < x  

From Fig. 5a, it is seen that the oscillations are reduced when we use the automatic Shuman 

filter in the computational scheme. We have drawn the graph for those parameters which give 

large oscillations compared to the other values of  the parameters. It may be remarked that it is 

possible to obtain a solution with almost no oscillations and sharp profiles by using the 

switched filter as shown in Fig. 5b for certain values of  the parameters. From Fig. 5b, it may be 

noted that the discontinuity is displaced to the right by 1wo mesh points because of  the 
dissipative character o f  the scheme. 

Fig. 6 shows the superiority of  the automatic-switch-filter technique for solving those prob- 
lems whose solutions contain rarefaction in addition to shocks. 

5. The two-dimensional case 

We consider the system of conservation laws in two space dimensions 

au a f  a f  
- -  + + = 0 ( 5 . 1 )  
at 

defined on the region D given by 

D : [O,X] x [0, Y] x [t > O] 
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with appropriate initial and boundary  condit ions.  We have extended the method  proposed in 

Section 2 for the one-dimensional  case by making use of  the Strang [ 16] formulat ion.  We illus- 

trate the me thod  by  an example.  

EXAMPLE 4: 

Consider the equat ion  

au O ~ y  0--t- + ~ -  ( u 2 / 4 ) +  (u2 /4)  = 0 (5.2) 

with the initial  and bounda ry  condi t ions  

u(x,y, O) = (x + y ) 2 / 4 ,  (5.3) 

u(0, y,  t) = 1[1 - ( 1  +yt) 1/2]/tl 2, (5.4) 

u(x, 0, t) = [[1 - ( 1  +xt)l/2]/t} 2. (5.5) 

The exact solut ion of  the problem defined on the region 

D : (0,1) x (0,1) x ( t  > 0) 

is given by 

u(x,y, t) = [ [ 1 - ( l + ( x + y ) t ) l / 2 ] / t l  2. 

TABLE III 

Error E.  106 after 300 time steps at the central grid point for Example 4 

-0.125 -0.25 -0.50 -1.0 -2.0 -4.0 -8.0 

p=  1.0 
b = -0.5 

0.125 -531 -505 -451 -343 -125 315 1194 
0.25 -538 -510 -454 -343 120 324 1244 
0.50 -542 -513 -455 -342 -117 330 1237 
1.00 -543 -513 -454 -341 -121 325 1263 
2.00 -542 -513 -458 -355 -152 277 1127 
4.00 -546 -525 496 -427 -292 -30  -466 
8.00 -575 -592 -636 -724 -974 -1815 -3485 

16.00 -715 -881 1266 -1998 -3516 * * 
a = 0.90825, c = -2.0, E .  106 = -120 

p -- 4.0 
b = -0.5 

0.125 -788 -717 -593 -397 -128 219 772 
0.25 -943 -834 -652 -391 -90  251 820 
0.50 -988 -829 -589 -300 -39  269 * 
1.00 -855 -662 -416 -199 -32  276 * 
2.00 -564 -420 -283 -198 -86  * * 
4.00 -274 -306 -316 -310 -324 * * 

* Instability 
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In Table III, errors are given for the same values of  the parameters as for the one-dimension- 

al problem. On examining the computed results, one finds the behaviour of  the solutions for 

the two-dimensional case to be similar to the one-dimensional case. For example,  it is seen that 

the stability (at least for the 50th time step) holds over a larger range than given by the 

theoretical value for p = 1.0 and p = 4.0. The errors become smaller for the parameters 

satisfying the relations (2.10) to (2.13); for example, b = - 0 . 5 ,  a = 0.90825, c = - 2 . 0  and b = 

0.5, a = 0.5, c = -0 .6667 .  

Hence, the cubic-spline-function technique can be used successfully for devising algorithms 

for the solutions of  nonlinear system of  conservation laws. This technique has also been used 

for the solution of  nonlinear, coupled Burgers' equations at high Reynolds numbers [ 17]. 
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